Dictionaries

’

A “Good morning’
dictionary

English: Good morning
Spanish: Buenas dias
Swedish: God morgon
German: Guten morgen
Venda: Ndi matscheloni
Afrikaans: Goeie more

What’s a dictionary!?

A dictionary is a table of items.
Each item has a “key” and a “value”

Keys Values
English Good morning
Spanish Buenas dias
Swedish God morgon
German Guten morgen
Venda Ndi matscheloni
Afrikaans Goeie more

Look up a value

| want to know “Good morning” in Swedish.

Step 1: Get the “Good morning” table

Keys Values
English Good morning
Spanish Buenas dias
Swedish God morgon
German Guten morgen
Venda Ndi matscheloni
Afrikaans Goeie more

Find the item

Step 2: Find the item where the key is “Swedish”

Keys Values
English Good morning
Spanish Buenas dias
— Swedish God morgon
German Guten morgen
Venda Ndi matscheloni
Afrikaans Goeie more

Get the value

Step 3:The value of that item is how to say
“Good morning” in Swedish -- “God morgon”

Keys Values

English Good morning

Spanish Buenas dias

Swedish God morgon -
German Guten morgen

Venda Ndi matscheloni
Afrikaans Goeie more

In Python

>>> good morning dict = {
"English": "Good morning",
"Swedish": "God morgon",
"German": "Guten morgen',
"Venda": "Ndi matscheloni',
}

>>> print good morning dict["Swedish"]
God morgon
>>>

(I left out Spanish and Afrikaans because they use
‘special’ characters. Those require Unicode, which
I’'m not going to cover.)

Dictionary examples

>>> D1 = {}

>>> len(D1)

0

>>> D2 = {"name":
>>> len(D2)

2

>>> D2["name"]
'Andrew’

>>> D2["age"]

33

>>> D2["AGE"]

"Andrew",

An empty dictionary

"age": 33}

A dictionary with 2 items

Keys are case-sensitive

Traceback (most recent call last):

File "<stdin>",

KeyError: 'AGE'

>>>

line 1, in ?

>>>
>>>
>>>
len
>>>
>>>

len
>>>

Add new elements

my sister = {}

my sister["name"] = "Christy"

print "len =", len(my sister), "and value is", my sister
= 1 and value is {'name': 'Christy'}

my sister["children"] = ["Maggie", "Porter"]

print "len =", len(my sister), "and value is", my sister

= 2 and value is {'name': 'Christy', 'children': ['Maggie', 'Porter']}

Get the keys and values

>>> city = {"name": "Cape Town", "country": "South Africa",
«oe "population”: 2984000, "lat.": -33.93, "long.": 18.46}
>>> print city.keys()

['country', 'long.', 'lat.', 'name', 'population']

>>> print city.values|()

['South Africa', 18.460000000000001, -33.93, 'Cape Town', 2984000]
>>> for k in city:

«oe print k, "=", city[k]

country = South Africa

long. = 18.46

lat. = -33.93

name = Cape Town

population = 2984000
>>>

A few more examples

>>> D = {"name": "Johann", "city": "Cape Town'"}
>>> counts["city"] = "Johannesburg"”

>>> print D

{'city': 'Johannesburg', 'name': 'Johann'}

>>> del counts["name"]

>>> print D

{'city': 'Johannesburg'}

>>> counts["name"] = "Dan"

>>> print D

{'city': 'Johannesburg', 'name': 'Dan'}
>>> D.clear ()

>>>

>>> print D

1}

>>>

Ambiguity codes
Sometimes DNA bases are ambiguous.

Eg, the sequencer might be able to tell that
a base is not a G or T but could be either A or C.

The standard (IUPAC) one-letter code for
DNA includes letters for ambiguity.

MisA or C YisCorT DisA, GorT
RisAorG KisGorT BisC,GorT
WisAorT VisA,Cor G N is G,A, T or C
SisCorG HisA,CorT

Count Bases #1

This time we’ll include all 16 possible letters

= seqg.count("A")

>>> seq =

>>> A

>>> B = seq.count("B")
>>> C = seqg.count("C")
>>> D = seqg.count("D")
>>> G = seq.count("G")
>>> H = seq.count("H")
>>> K = seq.count("K")

>>> M = seq.count("M")

>>> N
>>> R

>>> S
>>> T
>>> vV
>>> W

>>>

>>> print IIA —n , A, n

A=4B-=0
T =2V=0

Y

seqg.count("N")
seqg.count("R")

seqg.count("S")
seq.count ("T")
seqg.count ("V")
seq.count ("W")

= seqg.count("Y")

IIN =II, N, "R

C
W

2
1

4

B
R

< O

4

"S
= 0
0

4

Let the computer help out

"TKKAMRCRAATARKWC"

Don’t do this!

Count Bases #2

Using a dictionary

>>> gseq = "TKKAMRCRAATARKWC"
>>> counts = {}

>>> counts["A"] = seqg.count("A")
>>> counts["B"] = seq.count("B")

>>> counts["C"] = seq.count("C")

>>> counts["D"] seqg.count("D")

>>> counts["G"] seqg.count ("G")

>>> counts["H"] = seq.count("H") Don’t dO thiS either!

>>> counts["K"] seq.count("K")
>>> counts["M"] = seq.count("M")

>>> counts["N"] seq.count("N")
>>> counts["R"] seq.count("R")
>>> counts["S"] seq.count ("S")
>>> counts["T"] seq.count ("T")

>>> counts["V"] = seqg.count("V")
>>> counts["W"] = seq.count("W")
>>> counts["Y"] = seqg.count("Y")

>>> print counts

{‘a': 4, '¢c': 2, 'B': 0, 'D': 0, 'G': O, 'H': 0, 'K': 3,
INI: 0, 'S': O, IR|: 3, ITI 1 ! 1
>>>

;
=
;
<
;
<
2

Count Bases #3

use a for loop

>>> gseq = "TKKAMRCRAATARKWC"

>>> counts = {}
>>> for letter in "ABCDGHKMNRSTVWY":

counts[letter] = seq.count(letter)

>>> print counts

{‘a': 4, '¢c': 2, 'B': 0, 'D': 0, 'G': 0, 'H': 0, 'K':
3, 't': 2, 'W's:1, 'v': 0, 'Y': 0}

>>> for base in counts.keys():

print base, "=", counts[base]

UJ(')D’
I Il
N

TSN

VKIEHATInZ 2 RIDTQUO
oon—leoo._,wooo
o

\4

v oy I Il

Count Bases #4

Suppose you don’t know all the possible bases.

If the base isn’t a key in the

>>> seq = "TKKAMRCRAATARKWC" counts dictionary then use
>>> counts = {} -
oe for bose in seqs ~ zero. Otherwise use the
if base not in counts: value from the dlCt
n =20
else:

n = counts|[base]
counts[base] = n + 1

>>> print counts
{'‘'A': 4, 'C': 2, 'K': 3, 'M': 1, 'R': 3, 'T': 2, 'W': 1}
>>>

Count Bases #5 ‘o,

The idiom “use a default value if the key
doesn’t exist” is very common. Python has a
special method to make it easy.

>>> gseq = "TKKAMRCRAATARKWC"
>>> counts = {}
>>> for base in seq:
counts[base] = counts.get(base, 0) + 1

>>> print counts

{‘'A': 4, 'C': 2, 'K': 3, 'M': 1, 'R': 3, 'T': 2, 'W': 1}
>>> counts.get("A", 9)

4

>>> counts["B"]
Traceback (most recent call last):
File "<stdin>", line 1, in ?

KeyError: 'B'

>>> counts.get("B", 9)
9

>>>

Reverse Complement

>>> complement table = {"A": "T79", "T": "A", "C": "G", "G": "C"}
>>> seq = "CCTGTATT"
>>> new_seq = []
>>> for letter in seq:
. complement letter = complement table[letter]
new_seq.append(complement letter)
>>> print new_ seq
['G'I 'G'I 'A'I 'C'I 'A'I 'T'I 'A'I 'A']
>>> new_seq.reverse()
>>> print new_ seq
['A'I 'A'I 'T'I 'A'I 'C'I 'A'I 'G'I 'G']
>>> print "".join(new_ seq)
AATACAGG
>>>

Listing Codons

>>> seq = "TCTCCAAGACGCATCCCAGTG"
>>> seq[0:3]

"TCT'

>>> seq[3:6]

"CCA'

>>> seq[6:9]

"AGA'

>>> range(0, len(seq), 3)

[, 3, 6, 9, 12, 15, 18]

>>> for i in range(0, len(seq), 3):

print "Codon", i/3, "is", seq[i:i+3]

Codon 0 is TCT
Codon 1 is CCA
Codon 2 is AGA
Codon 3 is CGC
Codon 4 is ATC
Codon 5 is CCA
Codon 6 is GTG

>>>

The last “codon”

>>> seq = "TCTCCAA"
>>> for i1 in range(0, len(seq), 3):
print "Base", i/3, "is", seq[i:i+3]

Base 0 is TCT

|
Base 1 1is CCA/ NOt d COdOn.

Base 2 1is A
>>>

What to do? It depends on what you want.
But you'll probably want to know if the
sequence length isn’t divisible by three.

The %’ (remainder)
operator

>>> 0 3% 3

0

>>> 1 % 3

1

>>> 283 >>> seq = "TCTCCAA"
2 >>> len(seq)

>>> 3 % 3 7

0 >>> len(seq) % 3
>>> 4 % 3 1

1 >>>

>>> 5 % 3

2

>>> 6 % 3

0

>>>

Two solutions

First one -- refuse to do it

if len(seq) % 3 != 0: # not divisible by 3
print "Will not process the sequence”

else:
print "Will process the sequence”

Second one -- skip the last few letters
Here I'll adjust the length

>>> seq = "TCTCCAA"
>>> for 1 in range(0, len(seq) - len(seq)%3, 3):
print "Base", i/3, "is", seq[i:i+3]

Base 0 is TCT

Base 1 is CCA
>>>

Counting codons

>>> seq = "TCTCCAAGACGCATCCCAGTG"
>>> codon_counts = {}
>>> for i1 in range(0, len(seq) - len(seq)%3, 3):
codon = seq[i:i+3]
codon counts[codon] = codon counts.get(codon, 0) + 1

>>> codon_counts
{'ATC': 1, 'GTG': 1, 'TCT': 1, 'AGA': 1, 'ccAa': 2, 'CGC': 1}
>>>

Notice that the codon_counts dictionary
elements aren’t sorted?

Sorting the output

People like sorted output. It’s easier to
find “GTG” if the codon table is in order.

Use keys to get the dictionary keys then
use sort to sort the keys (put them in order).

>>> codon_counts = {'arc': 1, 'GTG': 1, 'TCT': 1, 'AGA': 1, 'CCA': 2, 'CGC': 1}
>>> codons = codon_counts keys ()

>>> print codons

['ATC', 'GTG', 'TCT', 'AGA', 'CCA', 'CGC']

>>> codons.sort ()

>>> print codons

['AGA', 'ATC', 'CCA', 'CGC', 'GTG', 'TCT']
>>> for codon in codons:
print codon, "=", codon counts[codon]

AGA
ATC
cca
CGC
GTG
TCT =
>>>

el e

Exercise 1 - letter counts

Ask the user for a sequence. The sequence

may include ambiguous codes (letters besides
A, T, C or G). Use a dictionary to find the
number of times each letter is found.

Note: your output may be in a different order than mine.

Test case #1 Test case #2
Enter DNA: ACRSAS Enter DNA: TACATCGATGCWACTN
A= 2 A =4
cC =1 C =4
R = 2 G = 2
S = 2 N = 1
T = 4
W =1

Exercise 2

Modify your program from Exercise | to find the length
and letter counts for each sequence in
/usr/coursehome/dalke/ambiguous_sequences.seq
It is okay to print the base counts in a different order.

The first three sequences The last three sequences
h 12
ie?uigse as 67 bases Sequence has 1285 bases
C = 306 A = 327
B =1 v =1
C = 224
- 388 ol
T = 282 G = 362
Yy = 1 Sequence has 570 bases
Sequence has 553 bases A = 158
Cc =120
A =119
T = 163
C = 161 G = 123
T = 131 N = 6
G = 141
N = 1 Sequence has 1801 bases
Sequence has 1521 bases c = 376
A = 465
A = 402 S - 1
C = 196
T = 462
T A G = 497
G = 215
N = 237

Exercise 3

Modify your program from Exercise 2 so the
base counts are printed in alphabetical order.
(Use the keys method of the dictionary to get

a list, then use the sort method of the list.)

The first sequence output should write

equence has 1267 bases
287

1

306

389

1

282

1

S
A
B
C
G
R
T
Y

Exercise 4

Write a program to count the total number of bases
in all of the sequences in the file
/usr/coursehome/dalke/ambiguous_sequences.seq

and the total number of each base found, in order

File has 24789 bases
A 6504

1

5129

1

5868

Here’s what | got.
Am | right!

I | | | | | | | Y | Y | Y | O | I
'—I

K =2 HX®nhZ2=2X"6OUOUOw

Exercise 5

Do the same as exercise 4 but this time use
/coursehome/dalke/sequences.seq

Compare your results with someone else.

Then try
/coursehome/dalke/many sequences.seq

Compare results then compare how long it
took the program to run. (See note on next page.)

How long did it run?

You can ask Python for the current time using
the datetime module we talked about last week.

>>> import datetime

>>> start time = datetime.datetime.now()
>>> # put the code to time in here

>>> end time = datetime.datetime.now()
>>> print end time - start time

0:00:09.335842
>>>

This means it took me 9.3 seconds to write
the third and fourth lines.

Exercise 6

Write a program which prints the reverse
complement of each sequence from the file
/coursehome/dalke/10_sequences.seq

This file contains only A, T, C,and G letters.

Exercise /

Modify the program from Exercise 6 to find the
reverse complement of an ambiguous DNA sequence.
(See next page for the data table.)

Test it against /coursehome/dalke/sequences.seq
Compare your results with someone else.

To do that, run the program from the unix shell and have it
save your output to a file. Compare using ‘diff’.

python your_file.py > output.dat
diff output.dat /coursehome/surname/output.dat

Ambiguous complements

ambig

uous_dna_complement = {

IAII:

ZBUEm<SsAKNEAT=EHQA

Z<EOwERUI <A

IITI ,

This is also the file

[coursehome/dalke/complements.py

Translate DNA into protein

Write a program to ask for a DNA sequence.
Translate the DNA into protein. (See next page for the
codon table to use.) When the codon doesn’t code for

anything (eg, stop codon), use “*”. Ignore the extra
bases if the sequence length is not a multiple of 3.
Decide how you want to handle ambiguous codes.

Come up with your own test cases. Compare your
results with someone else or with a web site.

Standard codon table

This is also in the file
/usr/coursehome/dalke/codon table

Py

table

< &
cGA
P B -
o -
P o~-
a- 0
c U H
2 & O
Tl
ul
(@] -~
>~ -
0 < &
5 = &
© B -
CI
[quu—
- Il
Il
())]
P 0w g
g o O
T O O
T O
@ O O
4 O
PP
oY
R O ®
PP
HF 0 m

